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The two-dimensional, q-state (q > 4) Potts model is used as a testing ground for 
approximate theories of first-order phase transitions. In particular, the predic- 
tions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing 
are compared with those of ordinary mean-field (Curie-Wiess) theory. It is 
found that the Curie Weiss theory is a better approximation than the 
Ramakrishnan-Yussouff theory, even though the former neglects all fluc- 
tuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the 
effects of fluctuations in this system. The reasons behind the failure of the 
Ramakrishnan-Yussouff approximation and the suitability of using the two- 
dimensional Potts model as a testing ground for these theories are discussed. 

KEY WORDS: First-order phase transitions; Curie Weiss theory; 
Ramakrishnan-Yussouff theory; large-q expansions for q-state Potts models; 
Monte Carlo simulations of Potts models. 

1. I N T R O D U C T I O N  

The theoretical study of first-order phase transitions has lagged behind that 
of continuous phase transitions, even though the former occur much more 
often than the latter. The reason for this lag is simple: There are various 
universal quantities (e.g., critical exponents, scaling functions (1'2~) assocated 
with continuous transitions; these universal quantities can be obtained by 
studying the simplest model in a given universality class. (1,2) Though there 
can be certain striking similarities between different first-order phase 
transitions (such as different freezing transitions(3)), there are no strictly 
universal features associated with these transitions; thus, each model must 
be studied separately. 
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The renormalization group provides, in principle, a way of studying 
first-order phase transitions in any model: Once a renormalization-group 
transformation has yielded a set of recursion relations for the coupling con- 
stants that characterize a model, the first-order phase boundary is obtained 
by finding all the points in the space of coupling constants that flow, under 
successive renormalization-group transformations, to a discontinuity fixed 
point. (4'5) Free energies and the jump in the order parameter at a first-order 
phase boundary are calculated in the standard way. (5~ The only problem 
with the renormalization-group approach is that it is very hard to 
implement for most models, such as those that yield liquid-to-solid freezing 
transitions. 3 Only for very simple models, such as the Ising and Potts 
models, has it been possible to construct approximate, but nonpertur- 
bative, renormalization-group transformations that yield discontinuity 
fixed points and the associated first-order phase transitions. 

Since the implementation of the renormalization-group method is 
often not feasible, it is necessary to find tractable aproximations that can 
be used to study first-order phase transitions in any model. The most com- 
mon approximation of this type is the mean-field, Curie-Weiss (CW) (7) 
approximation4: uniform order parameters (there may be more than one 
order parameter) characterize the possible ordered phases; no fluctuations 
are allowed for in these order parameters; and n-body interactions (n ~> 2) 
are approximate by effective one-body interactions, or effective fields, 
which depend on the order parameters. In equilibrium, the order 
parameters assume values that minimize (globally) the free energy of the 
system. 

The mean-field approximation described above does not work for a 
liquid-solid transition: The equations that have to be solved to obtain the 
order parameters contain the Fourier transform of the potential via which 
two particles interact; in all cases of physical interest, this potential 
diverges rapidly as the particles approach each other, so its Fourier trans- 
form does not exist. Thus, the equations for the order parameters are 
meaningless. 

The simplest way out of this difficulty with the mean-field 
approximation for the liquid-solid transition is to replace the pair potential 
via which particles interact by a density-density correlation function. (8'9) 
The most successful theory of this type is due to Ramakrishnan and 
Yussouff.(3,9 11) In place of the pair potential, they advocate the use of the 
direct correlation function (12) measured in the liquid just before it freezes. 

3 There have been some recent efforts to develop renormalization-group transformations for 
models of simple liquids, ~6) but these are in their infancy. 

4 Landau expansions of the free energy to some low order in the order parameter are not 
suitable for strongly first-order transitions. 
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Except for this modification, the equations for the order parameters have 
exactly the same form as they do in the conventional mean-field 
approximation. 

During the last few years, the Ramakrishnan Yussouff (RY) theory 
has been widely used in the description of freezing transitions into 
crystals,(3.9 11.13 16) liquid crystals, (17'18) glasses, (19'2~ and even the recently 
discovered quasicrystals/21) Given this extensive use, we feel the conditions 
under which the RY approximation is reliable should be studied. 5 It is our 
purpose here to initiate such a study. 

In particular, we study the first-order phase transition in the two- 
dimensional, q-state (q > 4) Potts model by using a man-field theory that is 
a direct generalization of the RY theory of freezing. The predictions of this 
theory are compared with those of conventional CW mean-field theory and 
with available exact results. Unfortunately, we have not been able to find 
clear criteria for the validity of the RY approximation. Our principal 
results are: (1) For all values of q considered here (q/> 10), the CW theory 
is a better approximation than the RY theory. (2) For the two-dimensional 
Potts model, the RY theory overestimates the role of fluctuations in 
precipitating the first-order transition to the ordered phase. (3) The results 
obtained from a calculation in which effects of three-spin correlations 
(which are neglected in the simplest RY approximation) are included are 
also quite different from known exact results. 

The remaining part of this paper is organized as follows. In Section 2, 
we review briefly the RY theory of the freezing of a liquid, develop a similar 
theory for the first-order transition in q-state (q > 4) Potts models in two 
dimensions, and show how it is related to the conventional CW mean-field 
theory of these models. In Section 3, certain thermodynamic functions 
needed as inputs to the RY theory are calculated by using the technique of 
large-q expension, and the accuracy of the large-q expansion is checked by 
comparing the results with those obtained from a Monte Carlo simulation 
for q = 10. In Section 4, we work out the predictions of the RY theory for 
the first-order transition in the two-dimensional Potts model and compare 
them with the results obtained from the CW approximation and with 
available exact results. We also describe the results obtained from a 
calculation (for q=  10) in which the effects of three-spin correlations are 
included. Section 5 contains a summary of our principal results and a few 

5 The conditions under which conventional man-field theory is reliable have been investigated 
thoroughly. All thermodynamic properties are given exactly by mean-field theory for systems 
with sufficiently long-ranged potentials. Universal critical properties are predicted correctly 
by mean-field theory above the upper critical dimension d. (d u=4  in the most common 
cases). 

822/'47/3-4-6 
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concluding remarks. In particular, we discuss the suitability of using the 
two-dimensional Potts model as a testing ground for the RY 
approximation. 

2. R A M A K R I S H N A N - Y U S S O U F F  A N D  CURIE-WEISS 
A P P R O X I M A T I O N S  

If Ft is the free energy of a uniform liquid with density pz, then the free 
energy functional F for a nonuniform density p(r) is/~3) 

f l ( F -  FI) = fl f dr [p(r) - p,] Ve(r ) 

1 
f d r l  dr2 C~2)(r1, r2)[p(rl)-pl][p(rz)-pt] 

2! Pl 

3,;/2 f dr1 dr2 dr3 C(3)(rl, r2, r3) 

x [p(rl)  - p/] [p(r2) - p/] [p(r3) - Pl] 

. . . .  (1) 

where fl = 1/kB T, kB is the Boltzmann constant, Ve(r ) is an external, one- 
body potential, and the correlation functions C (2), C (3), etc., are given by 

c~2[fl(F- Fl)] C(2)(rl, r2)= I--P1] (2a) 
6p(r~) 6p(r2) 

(~3[fl( F-- F,) ] 
C(3)(r,, r2, r3) = [ - -02]  (2b) 

6p(rl) 8p(r2) Op(r3) 

etc. Since the uniform liquid is rotationally invariant, C(2)(rl, r2) = 
C ( I r l -  r2l), the direct correlation function. If we minimize fl(F-FI) with 
respect to p(r), we get 

{ 1; 
p(r)pl - e x p  - f i v e ( r ) + ~  dr1 C(2)( r - r l ) [ p ( r l ) - p l ]  

1 C(3)(r, rl ,  + 2p--~ f drl dr2 r2)[-p(r~ ) - Pl] [p(r2) - P/] 

+ ...} (3) 
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i.e., p(r)/p/assumes the value it would have in a noninteracting fluid with 
an effective, one-body potential (molecular field) given by 

= - I r P , ]  #v=~(r) 

! 
+ 2p---~ f drl dr2 C(3)(r, rl, r2)[p(r,)  - Pl] [p(r2) - Pz] 

+ . . .  ( 4 )  

In the RY approximation, the terms containing C (") with n ~> 3 are neglec- 
ted in Eqs. (1), (3), and (4) and C(2)( r , - r2)  is taken to be the direct 
correlation function measured in the liquid just before it freezes. 

For a liquid in which the particles interact via a pair potential 
V(2)(Fr,- r21 ), the effective, one body-potential is 

I f  dr, V(2)([r-r,I)[p(r,)-p,] 
P/ 

in the CW approximation. Thus, the RY approximation is the usual mean- 
field approximation for such a liquid with V (2) replaced by -C(2)/~ in the 
self-consistent equation for p(r) and the equation for the flee energy 
functional fl(F-Ft). (In the remaining part of this paper we shall set 
C (n) = 0  for n ~ 3 unless stated otherwise.) 

The phase into which the liquid freezes is characterized by an infinite 
number of order parameters, namely the expansion coefficients I~G in 
density waves 

p(r) 
- 1 + y'/~6 exp(iG �9 r) 

Pt C 

which represent the crystalline solid. In terms of these order parameters, 
Eq. (3) can be rewritten as (C (n)= 0, n ~ 3) 

1 + ~  #~ e x p ( i G ' r ) = e x p  i ~  G C~)/~c exp(iG" r ) ]  (5) 

where C(~ ) is the Fourier transform of the direct correlation function 
(C(k 2) = 1 -  ptSf 1, where Sk is the static structure factor of the liquid.) 

For a liquid in which the particles interaact via a pair potential 
V(2)([r,--rz[), the conventional mean-field approximation yields a formal 
expression like Eq. (5), with C(~ ) replaced by -t~V(Z)e G, where V~ ) is the 
Fourier transform of V(2)(r). However, this formal expression is 
meaningless in all cases of physical interest because V(2)(r) diverges rapidly 
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as r ~ 0 ,  so V~) does not exist. Hence, the conventional mean-field 
approximation fails for the freezing of a liquid. 

Equation (5) is equivalent to an infinite set of coupled equations 6 for 
the order parameters #c .  For  the approximate solution of these equations 
and for the different choices of G's that lead to different crystal structures, 7 
we refer the reader to the original papers of Ramakrishnan and 
Y u s s o u f f ( 3 , 9  11) and to Refs. 13-16. 

We now develop the analogs of Eqs. (1) and (3)-(5) for a q-state Potts 
model, which is defined by the Hamil tonian 

H =  - ~ J o 6 ~ e , ~ j - ~ h e ( q 6 o , , 1 -  1 ) / ( q -  1) (6) 
i > j  i 

where the Potts spins a / c a n  assume values 1, 2,..., q for all sites i, h i is an 
external field [the analog of ve in Eq. (1)] which is conjugate to the order 
parameter  

1 
m , -  ( q _  1) ( ( q 6 ~ , 1 -  1))  

(the angular brackets denote a thermal average), and, for specificity, we 
choose Jq t o  be equal to J if i, j are nearest neighbor pairs of sites on a 
two-dimensional, square lattice, and Jij = 0 otherwise. 

For  q > 4, the model (6) with h i =  0 for all i goes from a disordered 
state (m/=  0) to an ordered one ( m i ~ 0 )  at a finite temperature T,. via a 
first-order phase transition/23)'8 This transition is much simpler than the 
liquid-solid transition because the ordered state is uniform and there is 
only one order parameter. Also, the conventional mean-field 
approximation ~24) is not meaningless for the Potts-model transition as it is 
for the liquid-solid transition. 

To obtain the conventional mean-field and RY approximations for 
model (6), we write the density matrix p as a product 1-[i P/, with the one- 
particle density matrices 

p / =  exp [ - 3He~(Oi) ] /Tr  exp [ - ~ H e , ( o i )  ] 

Heft(q/) = -heff(q6,~i ,a  - -  1 )/(q - 1 ) 

err_ hl + r h i - h i 

(7) 

(8) 

(9) 

6 This can be seen by multiplying both sides of Eq. (4) by exp(-iG, r) and integrating over a 
unit cell. 

7 In the simplest, one-order-parameter approximation, the magnitude of G is set equal to the 
value of k at which the structures factor Sk has its principal maximum. 

8 See Wu ~22) for a review of phase transitions in two-dimensional Potts model. 
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where eft stands for effective and r for response. Conventional mean-field 
theory ~24) is obtained by minimizing ~,(p) _=_ kB T Tr(p In p) + Tr(pH) with 
respect to he rr and with p = l-Ii pi- This yields 

h~ff=h~ + q~q l ~ jijmj (10) 

In addition, the order parameter 

((q6~,,,- 1)>pi 
m i =  q - 1  

must satisfy the self-consistency relation 

/~h~rf - q - 1 In 1 + (q - 1)m s (11) 
q 1 - m  i 

The minimization of O(p) with respect to h~ ff is equivalent to the 
minimization of 

F= - Z h~.m,- q -_~1 ~, Jomirnj 
i q i>j 

+ k s T  Z {[1 + ( q -  1)mi] ln[1 + ( q -  1)ms] 
q i 

+ ( q -  1)(1 -m~)ln(1 -ms)}  - k s T l n  q (12) 

with respect to mi; the resulting self-consistent equation for mi is the same 
as the one obtained by combining Eqs. (10) and (11). For a uniform exter- 
nal field (h e = h e for all i), the order parameter is uniform (m~ = m for all i) 
at the global minimal of F, so the response field 

h;=zJ(q- 1)m/q (13) 

where z is the coordination number of the lattice ( z = 4  for the two- 
dimensional square lattice considered here). 

This expression for the response field is not employed in the RY 
approximation. Instead, we expand h7 as [cf. Eq. (4)] 

1 ~ r~(3)m.m (14) fl hr :- 2 C(ij2)mj -}-'2 "~Uk J k q- "'" 
J 

and, as before, write the density matrix p as FI~ pi, with p~ given by Eqs. 
(7)-(9). Again, this yields the self-consistency relation (11). Substituting 
h~ft-h~ for h~ in Eq. (14) and using Eq. (11), we get 

C!?),: = --(q - 1 )(Z - '  )o + (q - 1 )~5~ (15) 
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where 

(Z-l)~ = q----~l 8mj {,~,} =o 

are the elements of the inverse susceptibility matrix. We define the nonlocal 
susceptibility as 

Omi 
Z ~  {h7~=o 

Given the Hamiltonian (6), the expression (14) for flh~ cannot be 
obtained by minimizing ) ~ ( p ) = k B T T r ( p l n p ) + T r ( p H  ). Instead, it is 
obtained by minimizing 

~'= - ~ , h f m i  
i 

) 
k B T  

+ ~ { [ l + ( q - 1 ) m i ] l n [ l + ( q - 1 ) r n ~ ]  
q i 

+ (q - 1)(1 - m i ) l n ( 1  - m i ) }  - k B T l n  q (16) 

with respect to m,. Equation (16) is the Potts analog of Eq. (1). To obtain 
the RY approximation, we set C( ' )=  0, for n >~ 3, in Eqs. (14) and (16). 

Henceforth we shall restrict ourselves to uniform external fields 
(h 7 = h e for all i) and uniform order parameters (rni = m for all i). Thus, the 
self-consistent equation for m in both CW and RY approximations will be 

exp(fih e~) - exp [ - flhe~/(q - 1 )] 

m = exp(fiheff) + (q _ 1) exp[ -flheff/(q - 1)'1 

with 

h err = h e + z(q - 1 )m/q 

in the CW case and 

heff=h~+ ( m / f l ) ( q -  1)(1 - l/z) 

in the RY case, where 

(17) 

(18a) 

(18b) 

z=Ezo ( 8c) 
] 
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is the uniform susceptibility in the disordered phase. [-In Eq. (18a) and in 
the rest of the paper, we have set J =  1 and kB = 1, so that the temperature 
T is measured in units of J/kB.]  Thus, the CW self-consistent equation is 
obtained from the RY self-consistent quation by replacing (1//~)(1 - 1/Z ) by 
z/q. As we shall see in Section 4, both these approximation yield a first- 
order phase transition 9 for q ~> 3. 

We defer a comparison of the CW and RY approximations for the 
Potts model until Section 4. However, the following observation is worth 
making: It is wll known (e.g., Ref. 25) that 

F~xaot~Fcw (19) 

where F stands for the equilibrium free energy. However, it is not clear 
whether the Ramakrishnan-Yussouff free energy FRy provides an upper 
bound for F~xact. 1~ 

3. LARGE-q EXPANSION AND C O M P A R I S O N  WITH 
MONTE CARLO RESULTS 

It is clear from Eqs. (17) and (18b) that an analysis of the RY theory 
of the phase transition in the Potts model requires knowledge of the tem- 
perature dependence of the uniform susceptibility Z in the disordered phase. 
A similar situation occurs in RY-type theories of freezing, ~3'9 ~1,13-21~ where 
the needed information about the direct pair correlation function in the 
liquid phase is obtained from experiments, numerical simulations, or 
approximate analytic calculations. We have used the technique of large-q 
expansion to calculate the susceptibility Z in zero external field as a 
function of temperature in the disordered phase. The large-q expansion for 
Potts models was developed by Ginsparg et aL ~26) for zero external field, 
and later extended by Goldschmidt ~2v) to include the effects of an external 
field. This method has been shown ~26) to yield accurate estimates of the 
critical value q~ of q at which the phase transition changes from second to 
first order (qc = 4 in two dimensions), and of the latent heat associated with 
the first-order transition. A brief description of our calculation of g is given 
below. For further details about the large-q expansion procedure, the 
reader is referred to the original paper of Ginsparg et al. ~26) 

9For the Ising model ( q = 2 )  the RY theory yields a continuous transition with the 
magnetization exponent /~ = y/2, where 7 is the exact  susceptibility exponent. Thus, mean- 
field exponents obtain for dimension d~> 4. 

~o F c w  and FRy are obtained by evaluating F and P, respectively [Eqs. (12) and (16)] at their 
global minima. 
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If the external field h e is equal to zero, then the susceptibility )~ in the 
disordered phase can be written as 

z(h~= 0)--- ( q -  1) ~ - ~  h~=o 

1 
- N ( q - -  1) ~ ((qcS~'l- 1)(q~i~'l- 1)) (20) 

m , n  

where N is the total number of spins. Using the fact that in the disordered 
phase, the quantity 

((q6 ..... - 1 ) (q6  .... - 1 ) ) ,  ~ = 1 , 2  ..... q 

is independent of c~, we can reduce Eq. (20) to the form 

1 
X - N ( q _ l ) ~  (q6 . . . . .  - 1 )  

m , n  

= 1 + N2 Tre-~HSm>nTr(q6e-~H . . . . .  - 1) / (q-  1) (21) 

where H is the Hamiltonian defined in Eq. (6) with all the external fields h i 
equal to zero. The large-q expansion is then used to evaluate both the 
numerator and the denominator of the second term on the right-hand side 
of Eq. (21). As we shall see shortly, the expansion parameter in two dimen- 
sions is w = l /x/q.  This expansion involves a rearrangement of the high- 
temperature series in such a way that all terms to a given order in the 
expansion parameter w are collected together. Each order in w is therefore 
exact to all orders in /3. The expansion for the partition function Z =  
Tr exp(- /3H) is obtained by writing it in the form 

Z = T r  ]-I [ ( e~ - l )6~ , ,~  + 1 ]  

[ j = ( l + u w )  2N Tr l-I l+l~--~uw(@~,,oj-1) (22) 
( i j )  

where ( i j )  stands for distinct nearest neighbor pairs and 

u = (e ~ -  1)/x/q (23) 

It is easy to show that 0 < u < 1 for all temperatures higher than the exact 
transition temperature ~23) T;X= 1/ln(1 + x/q). This particular way of scal- 
ing the temperature variable ensures (26) that only a finite number of terms 
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contr ibute to the expansion for a given order  in w. The terms arising from 
the expansion of the produc t  in the r ight-hand side of  Eq. (22) are 
represented by diagrams in the s tandard  way, and all diagrams con- 
tributing to a part icular  order  in w are collected together. The diagrams 
contr ibut ing to orders w 2 and w 3 in the expansion for Z are shown in 
Fig. la, where each solid line represents the factor  

u w ( q 6 ~ i , ~  j -  1)/(1 + u w )  

We have carried out  the expansion for Z th rough  order  w< The large-q 
expansion for the numera tor  of  the second term in the r ight-hand side of 
Eq. (21) proceeds exactly along the same lines. The only difference is the 
presence of  the extra factor 

(q6  . . . . .  - 1 ) / ( q  - 1 ) 

The diagrams contr ibut ing to this expansion to orders w and w 2 are shown 
in Fig. lb, where the dashed lines represent the factor 

(q3 . . . . .  - 1 ) / ( q  - 1 ) 

This expansion was carried out  th rough  order  w 4. The resulting expansion 
for ;~ therefore contains terms up to order  w 4. In Ref. 27, the large-q expan- 
sion for the free energy of the Pot ts  model  on a square lattice in the 
presence of an external field [ the definition of the external field used in 
Ref. 27 is somewhat  different from the one given in Eq. (6)]  was carried out 

(a) 

(b) 

Fig. 1. Low-order diagrams contributing to the large-q expansions for (a) the partition 
function Z and (b) the susceptibility g. The solid lines represent the nearest neighbor bonds 
uw(qbo~.~j-1)/(1 + uw), and the dashed lines in (b) represent the factor (qg ..... -1) / (q-1) .  
The first and the second diagrams in (a) are of order w 2 and w 3, respectively. The first 
diagram in (b) is of order w and the remaining three are of order w 2. 
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through order w 4. The first three terms (orders w 2, w 3, and w 4) of the 
expansion for Z and the first two terms (orders w and w 2) of the expansion 
for Z can be obtained from this work. Our results for these terms are in 
agreement with those obtained in Ref. 27. 

Not  much information is available on the convergence properties of 
the 1/x/q expansion. Although it is known to yield accurate estimates for qc 
and the latent heat, we are not aware of any test of the accuracy of this 
method in predicting the temperature dependence of thermodynamic 
functions. For  this reason, we decided to check the accuracy of the results 
obtained from our truncated 1/x/q expansion by comparing them with 
those obtained from a Monte Carlo simulation of the model with q = 10. 
The Monte Carlo simulations were carried out for a 40 x 40 sample. The 
standard Metropolis algorithm (e.g., Ref. 28) was used in the simulations. 
The results for the internal energy per spin E and the susceptibility )~ 
obtained from the stimulations were compared with the predictions of the 
large-q expansion. The expansion for E(T> T e~) up to order w 5 was 
obtained from the high-temperature, large-q expansion for Z described 
above. The expansion for E ( T <  Te~), also up to order w 5, was obtained 
from the high-temperature result by using the exact duality 
transformation {;2) that relates the partition function at a temperature 
T <  T~e x to that at a temperature T' > T~ x. The comparisons for E and )~ are 
shown in Figs. 2a and 2b, respectively. It is clear that the truncated 1/x/q 
expansion for E is in excellent agreement with the Monte Carlo results, and 
also with the exact results available for T =  T~ x. The expansion for )~ also 
works quite well if the temperature is not very close to T~ x. The reason for 
the observed discrepancy near T =  T~ x is not difficult to understand. The 
higher order terms in the large-q expansion on the high-temperature side 
contain large powers of the quantity u defined in Eq. (23). Since u ~ 1 as 
T ~  T~ x, these terms become more important near the transition. We shall 
find in the next section that an analysis of the RY theory does not require 
knowledge of the behavior of Z at temperatures close to T~ x. Also, the 
accuracy of our expansion for Z is expected to get better for values of q 
larger than 10. For  these reasons, we conclude that the large-q expansion 
for Z truncated at order 142 4 (order 1/q 2) is quite adequate for our present 
purpose. 

4. R E S U L T S  OF  T H E  R A M A K R I S H N A N - Y U S S O U F F  
A P P R O X I M A T I O N  

As discussed in Section2, the self-consistent equation (17) for the 
order parameter m in the RY approximation is identical to that in the CW 
theory. The only difference is in the form of the effective field h e~ [Eq. (18a) 
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for the CW approximation,  Eq. (18b) for the RY approximation; note that 
in the high-temperature limit, fi --, 0, the susceptibility Z -~ 1 + zfl/q, and the 
two expressions for h e" become identical]. Thus, the analysis of the RY 
theory proceeds along the same lines as that of the CW theory. (24) We con- 
sider the situation where the external field h e is equal to zero. Then, at high 
temperatures, the self-consistent equation (17) has only one solution at 
m = 0. This solution corresponds to the only minimum of the free energy, F 
or F. As the temperature is decreased, two more solutions with m > 0  
develop for q >~ 3, one corresponding to a maximum and the other to a 
minimum of the free energy. The value of the free energy at the new 
minimum decreases relative to that at m = 0 as the temperature is reduced. 
Eventually, at a temperature for which flh ~ = 2(q - 1 ) ln(q - 1 )/q, the free 
energy at the new minimum [-which occurs at m = ( q - 2 ) / ( q - 1 )  at this 
temperature]  becomes equal to that at m = 0 .  This signals a first-order 
phase transition in which the order parameter  m changes discontinuously 
from zero to the value ( q - 2 ) / ( q - 1 ) .  Thus, the transition temperature in 
the CW approximation in given by (24) 

T CW = 2(q - 2) (24) 
(q - 1 ) ln(q - 1 ) 

and the transition temperature in the RY approximation is to be deter- 
mined from the condition 

1 2 ( q  - 1 ) l n ( q  - 1 ) 
1 - - -  ( 2 5 )  z(T~ v) q ( q  - 2) 

The values of TRv for different values of q, determined via Eq. (25) and the 
large-q expansion for X described in Section 3, are shown in Table I. Values 
of Tcw and the exact results for Tc [T,e x= 1/ln(1 + x /q ) ]  are also listed for 
comparison. Both CW and RY approximations yield values of Tc that are 
higher than T~e x, with the RY approximation doing worse than the CW 
approximation for all the values of q (q 1> 10) considered here. We found in 
Section 3 that the results for Z obtained from the truncated large-q expan- 
sion for q = 10 are indistinguishable from the Monte Carlo results for tem- 
peratures higher than ~ l .3T~  x. Since the value of TRv for q =  10 is 

1.5T~ ~, the large difference between T~ RY and T~ ~ cannot be attributed to 
errors arising from our use of the large-q expansion for Z. Since the 
accuracy of the large-q expansion increases with q and the calculated value 
of the ratio T~Y/T~cX also increases with q, the same argument applies to 
values of q higher than 10. The failure of the RY approximation in the 
q ~ oe limit can, in fact, be demonstrated explicitly. In the q ~ 0o limit, 
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Table  I. Values of the Transition Temperatures T RY of the Two-Dimensional ,  
q-State Potts Model on a Square Lattice Calculated 

from the RY Approximation ~' 

q TRY TCWc Tex 

10 1.06 0.809 0.701 
20 0.97 0.644 0.588 
30 0.93 0.574 0.535 
40 0.90 0.532 0.502 
50 0.87 0.503 0.479 

100 0.81 0.431 0.417 
200 0.76 0.376 0.368 
300 0.73 0.350 0.434 
500 0.70 0.321 0.317 

1000 0.67 0.289 0.287 

The results obtained from the CW approximation (T ccw) and the exact result (T eX, ) are also 
listed for comparison. 

only the first diagram in Fig. lb needs to be included in the expansion for 
7~. This leads to the result 

X ] q ~  ~ 1 + 4 ( e / 3 -  1)/q (26) 

which, together with Eq. (25), implies that 

TcRVlq~ ~ 1/ln(ln q) (27) 

The q dependence of T c predicted by Eq. (27) is quite different from the 
exact result, T~X--.2/ln q as q ~  o% whereas the CW result [Eq. (24)] 
becomes exact in the q --* oo limit. 

The accuracy of the 1/x/q expansion for X truncated at order 1/q ~ is 
questionable for values of q close to 4. For  this reason, RY treatments for 
4 < q <  10 were not attempted. Thus, we cannot rule out the unlikely 
possibility that the RY approximation works better than the CW 
approximation for these values of q. 

Other quantities of interest at the first-order transition include Am, the 
discontinuity of the order parameter  at the transition, and AS, the change 
in entropy per spin across the transition. The value of Am is equal to 
(q -- 2)/(q -- 1) in both CW and RY approximations. For  the q-values con- 
sidered here, this prediction yields values of Am which are slightly higher 
than the exact results, (23) with the difference going to zero as q--* oo. The 
CW and RY predictions for the entropy change at the transition can be 
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obtained from the corresponding expressions (12) and (16) for the free 
energy. The results are 

(AS)c w = ( q -  2)ln(q - 1 )/q (28a) 

(q - 2) 2 TR Y 0__~X 
~ - ~ i - )  1- "['T'RY) "20T T= (2Sb) L t l c  J ~ r  

We find that the CW result for AS is always higher than the exact 
value, (23) with the difference going to zero in the q -~ oo limit. The value of 
AS obtained from the CW approximation is smaller than In q, as expected, 
for all values of q ~> 3. If we use the high-temperature, large-q expansion for 
X to calculate the derivative OZg/t?T in Eq. (28b), then we obtain values of 
(AS)Rv that are larger than In q for all values of q ~> 10. This obviously 
unphysical result is partly caused by the largeness of the calculated value of 
T RY appearing in the RY expression (28b) for AS. If we consider the quan- 
tity AS/T  C instead of AS, then we obtain more sensible results. The values 
of AS/Tc obtained from the RY approximation are closer to the exact 
results than those obtained from the CW approximation if q is in the range 
13 ~< q ~ 92. At q = 46, the RY approximation yields almost the exact result 
for AS/T  c. For 10~<q< 13, the RY values for AS/T~. are higher than the 
CW values, whereas for q > 92, the RY values are smaller than the exact 
results, with 

I(AS/T~)rty - (AS/Tc)e• > [-(AS/Tc)cw - (AS/Tc)ex] 

Thus, we find that the simple CW approximation works better than 
the RY approximation for all values of q (q >/10) considered here. This 
result is somewhat unexpected in view of the fact that that the RY 
approximation takes into account some of the effects of fluctuations, 
whereas all fluctuation effects are neglcted in the CW approximation. If 
the usual mean-field expression for the zero-field susceptibility in the 
disordered phase 

1 
Z 1 - f i z / q  (29) 

is used in Eq. (18b) to calculate the h ~f~, then one obtains the CW result, 
Eq. (18a). Thus, our calculation shows that using a more accurate estimate 
(the large-q expansion) for Z in Eq. (18b) actually leads to worse results. 
This result, which we find rather surprising, indicates that the basic 
ingredient of the RY approximation, namely truncating the Taylor expan- 
sion for the response field h r [Eq. (14)] at order m while using the exact 
susceptibility to evaluate the coefficients C (2), leads to some inconsistency 
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for the two-dimensional Potts model. In this system, the RY prescription 
appears to overestimate the effects of fluctuations. In the RY picture, the 
phase transition takes place when spontaneous fluctuations having the 
symmetry of the ordered phase grow to a certain magnitude. The fact that 
the calculated values of TRv are much higher than T e~ may therefore be 
considered as evidence that the RY approximation overemphasizes the 
ordering effect of these fluctuations. The reasons behind this problem are 
not fully understood. One obvious candidate is the truncation of the expan- 
sion in Eq. (14) at linear order. In order to examine the effects of this trun- 
cation, we carried out an analysis in which the first two terms (orders m 
and m 2) of the expansion were retained. In the uniform situation (h e = h e 
and mi=  m for all i), Eq. (14) then takes the form 

flh r -=- C 2 m  + I C 3 m 2  (30) 

where 

C2 = ~ C !~) = ( q -  1)(1 - l/Z) /j 
J 

as before, and 

V'Ok 6qm2 lrn= (31) 
j,k 0 

After a little algebra, Eq. (31) can be reduced to the form 

C3 = - ( q -  1 ) ( q - 2 ) +  ( q -  1)3~(3)/~ 3 (32) 

where 

h = 

Z(3)---~3=ffh-72 e o (33) 

is a higher order susceptibility, which, in the disordered phase, can be writ- 
ten as 

Z(3)=N ( [ q ~ l  1 ~ (qcS~,,~ - 1 ) ] 3 /  (34) 

Thus, in the approximation in which the truncation is made at order rn 2, 
the counterpart of Eq. (18b) for the effective field is 

he =he  ,,( l,3 '3' lm2 /? 1 XJ 2/~ ~3 ( q - 1 ) ( q - 2 )  (35) 
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and the expression for the free energy becomes 

N 

- -  _ _  _ _  f l h e m  - _ _  

1 [ ( q -  1)3Z (3) q 1(, 

1 
+ -  {[1 + ( q -  1)m] ln[1 + ( q -  1)m] 

q 

+ ( q -  1)(1 - m )  l n ( 1 - m ) } - l n  q 

( q -  1 ) ( q - 2 ) ] m  3 

(36) 

For an analysis of the behavior predicted by these equations, it is necessary 
to have information about the temperature dependence of X (3). It is possible 
to develop a large-q expansion for this quantity by using the procedure 
outlined in Section 3. This calculation, however, is very complicated, 

20 I I I f 

Fig. 3. 

15 

X(3) 
lo  

q =10 

t 
J 

0 I I i '[' 
0.7 0.8 0.9 1.0 1.1 1,2 

T E M P E R A T U R E  T 

Results for the susceptibility ~((3) (see text) for q = l0 obtained from a Monte  Carlo 
simulation. 



First-Order Phase Transition in 2D Potts Models 393 

involving a large number of diagrams for even the low-order terms. Also, 
the convergence of the expansion for Z (31 is anticipated to be slower than 
that for Z. For  these reasons, a large-q expansion for Z (3) was not 
attempted. Instead, we calculated Z (3) as a function of T for q = l0 from our 
Monte Carlo simulations. The results are shown in Fig. 3. At high tem- 
peratures, Z (3) is small and weakly dependent on T. As T approaches T~ x 
from above, the value of Z (3) increases sharply. Due to large fluctuations, 
the values of Z (3) for T ~  T~ x and for T <  T~* (in the supercooled metastable 
state) could not be determined with high accuracy from our Monte Carlo 
runs, which consisted of 10,000 Monte Carlo steps per spin. Using the 
Monte Carlo estimates for Z and Z (3) in Eq. (32), we find that the coef- 
ficient C3 is always negative. The magnitude of C3 increases from ~ 10 at 
T =  1.2 to ~40  as T ~  ~x. The negative sign of C3 implies that the m 2 
term in Eq. (35) tends to inhibit the transition to the ordered phase. This 
effect goes in the right direction in the sense that it tends to compensate for 
the overestimation of the ordering effect of fluctuations found in the 
approximation in which the truncation is made at order m. However, the 
correction produced by the m 2 term appears to have too large a magnitude, 
so that the net result is an underestimation of the effects of fluctuation. A 
numerical search for the minima of the free energy given in Eq. (36) [with 
h e = 0  and the Monte Carlo values for Z and Z (3)] does not show any 
minimum other than the one at m = 0 for temperatures higher than T ex. 
Due to large numerical uncertainties in the Monte Carlo estimates for Z 
and Z {3) at temperatures close to T~ x, we cannot rule out the possibility of a 
transition taking place at a temperature slightly higher than or below T~e x. 
However, our numerical analysis of Eq. (36) shows that if such a transition 
does occur, it would have a very small value (<0.2)  of Am. Thus, the 
inclusion of the order m 2 term in the expansion for h r completely changes 
the predicted behavior, but yields results that are again quite different from 
the exact ones. This observation suggests that the Taylor expansion for h r 
in powers of m is a poorly convergent one at best, and may very well be 
asymptotic for the values of m of interest here. 

5. S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

We have found that a man-field theory analogous to the RY theory of 
freezing does not work well for the first-order phase transition in the two- 
dimensional Potts model. The basic ingredient of the RY approximation is 
an expansion of the response field in powers of the order parameter. The 
coefficients of this expansion are determined from the correlation functions 
in the disordered phase. The usual RY approximation corresponds to a 
truncation of this expansion at linear order. We have found that the 

822/47/3-4-7 
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analogous approximation for the Potts model yields results that are worse 
than those obtained from the simple CW approximation. Retaining the 
second term in the expansion completely changes the RY predictions. 
However, the results obtained from this two-term approximation are again 
quite different from known exact results. These observations indicate that 
for the two-dimensional Potts model, the Taylor-series expansion for the 
response field is a poorly convergent one, and a truncation of this expan- 
sion at a low order is not a good approximation. 

A question that naturally arises from this study is whether the con- 
vergence problem found here is generic to the RY approximation or is 
peculiar to the system considered here. For an answer to this question, it is 
necessary to understand the suitability of using the two-dimensional Potts 
model as a testing ground for the validity of RY-type approximations. 
Generally speaking, the errors arising from a truncation of the expansion 
for the response field at a low order are expected to be small if (a) the dis- 
continuity of the order parameter at the transition is small (since the 
Taylor expansion is used to describe both the disordered and the ordered 
phases, the higher order terms in the expansion would be less important if 
the order parameter has a small value at T =  To),  and (b) fluctuations at 
temperatures near Tc are small. (If large pseudocritical fluctuations are 
present, then the expansion coefficients C (2), C (3), etc. are expected to have 
large values.) In the two-dimensional Potts model, the first criterion is not 
satisfied for large values of q because the magnitude of the order-parameter 
jump at the transition increases with q. Since the transition is of second 
order for q ~< 4, the second criterion is not satisfied if q is close to 4. Thus, 
one may expect the RY approximation to work well only over a limited 
range of intermediate values of q. Our calculation shows that such a range 
of q values does not exist. This result may be a reflection of the fact that the 
jump in the order parameter at the transition is quite large for relatively 
small values of q (Am ~_ 0.86 for q = 10), while fluctuations at temperatures 
close to T ex remain large (the specific heat and the susceptibilities show 
large enhancements near T~ x, as can be seen in Figs. 2a, 2b, Fig. 3) for 
values of q as large as 10. Thus, it is possible that the choice of the two- 
dimensional Potts model as a testing ground for the RY approximation is a 
particularly unfavorable one. It is, however, interesting to note in this con- 
text that convergence problems similar to those encountered here (but less 
severe in the quantitative sense) were discovered in a recent analysis (29) of 
RY-type theories of the freezing of the hard-sphere liquid. In this study, it 
was found that if an approximate analytic representation of the direct pair 
correlaltion function is used in the calculation, then the inclusion of a part 
of the direct triplet correlation function contribution worsens the predic- 
tions considerably. A systematic analysis of the sensitivity of the predictions 
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of RY- type  theories  of  freezing to the level of  t r unca t ion  is very difficult 
because  no t  much  in fo rma t ion  is ava i lab le  a b o u t  the h igher  o rde r  direct  

cor re la t ion  funct ions in the l iquid phase.  Thus,  tests of  RY-type  
a p p r o x i m a t i o n s  on o ther  s imple mode l s  exhib i t ing  f i rs t -order  phase  
t rans i t ions  (e.g., the B l u m e - E m e r y - G r i f f i t h s  mode l  (3~ and  the Ising 
an t i f e r romagne t  is a un i form externa l  field (4)) would  be interes t ing and  

useful. 
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